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Esta guia tiene como objetivo establecer las fases basicas para la implementacién de un
gemelo digital para cualquiera de sus multiples funcionalidades. Esto implica que
dependiendo del uso que se le vaya a dar al gemelo (monitorizaciéon, mantenimiento,
entrenamiento, etc.), se debera adaptar cada una de las partes aqui descritas.

En la Figura 1 se muestra un flujo de datos sencillo que permite gestionar tanto los datos
procedentes de los sensores, como los generados por las simulaciones. Gestionar
correctamente el almacenamiento, tratamiento y visualizacion de estos datos es
fundamental.
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Figura 1. Flujo de datos basico

1. Sensorica - loT

Una vez seleccionados los sensores necesarios en el equipo/sistema fisico debemos definir
cOmo se procesan los datasets que se obtienen de esos sensores. Normalmente se registra
estos datasets como timeseries, es decir, el dato que envia el sensor se asocia a una escala
temporal. Los sensores, en general, envian las sefiales en voltios, lo que implica que
necesitan una calibracién. A continuacion, se muestra un extracto de cédigo en Python para
la adquisicién y calibracién de los valores procedentes de un sensor (el ejemplo se
corresponde a una célula de carga).
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async def read_loop(self, stop_event):
try:
while not stop_event.is_set():
line = self.ser.readline().decode('utf-8', errors='ignore").strip()
if line and "Load:" in line:
match = re.search(r'Load:\s*(-\d+(?:\.\d+)?)', line)
if match:
try:
self.signal_value = float(match.group(1))
self.load_value =-0.0014 * self.signal_value - 267.33#calibracién
print(f"Signal: {self.signal_value:.3f}")
print(f"Load: {self.load_value:.3f}")
except ValueError:
pass
await asyncio.sleep(0.1)

Este codigo se puede ejecutar en el propio PLC o dispositivo conectado a los sensores. Un
PLC tipo Siemens Logo! permite una automatizacion simple, que interactua con sensores
(temperatura, movimiento, luz, etc.) mediante sus entradas analégicas/digitales, procesa los
datos con bloques de funcién y controla actuadores, permitiendo monitoreo remoto y
comunicacion via Ethernet o GPRS para obtener datos en tiempo real.

La capacidad de computacion que ofrecen hoy en dia los PLC's permite realizar un primer
pre-procesado de los datos procedentes de los sensores, es decir, un primer filtrado para
eliminar el posible ruido asociado a los datos obtenidos en bruto desde los sensores.

Un ejemplo sencillo de una primera “limpieza” de los datos es un filtro paso-bajo que suaviza
el ruido de alta frecuencia mientras mantiene la tendencia general de la sefial del sensor.

import numpy as np
def moving_average (signal, window_size=5):
"""Return signal smoothed with a simple moving average."""
window = np.ones (window_size) / window_size
# mode='valid' shortens the output; use 'same' to keep same length
filtered = np.convolve (signal, window, mode='same’)
return filtered
# Example: sensor_data is a 1D NumPy array with your readings
# sensor_data = np.array([...])
filtered_data = moving_average(sensor_data, window_size=10)

Se debe elegir el “window_size” segun el nivel de suavizado que se necesite. Las “ventanas”
mas grandes eliminan mas ruido, pero también ralentizan o difuminan los cambios rapidos.
La libreria Scipy de Python permite realizar filtrados mas avanzados.
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2. Capa Edge

Un dispositivo Edge es un elemento hardware que se ubica en el limite de una red y conecta
equipos o usuarios locales con otras redes o la nube, a menudo procesando datos
localmente antes de enviarlos. Estos dispositivos actuan como puntos finales o puertas de
enlace donde los datos entran o salen de una red, ubicados cerca de fuentes de datos como
maquinas, sensores o usuarios. Pueden realizar tareas informaticas como agregar, filtrar y
analizar datos cerca de la fuente para reducir la latencia y el uso del ancho de banda.

Habitualmente en este tipo de despliegues se usan como puertas de enlace de IoT industrial
que vinculan PLC y sensores a plataformas en la nube y pueden ejecutar analisis basico
localmente.

Su uso principal es para procesamiento local de datos: preprocesamiento, agregacion y
analisis en tiempo real para permitir respuestas rapidas y reducir el envio de datos a la nube.
La conectividad y la posibilidad de usar diferentes protocolos es uno de sus puntos fuertes.
Se pueden conectar buses de campo, protocolos industriales o redes locales de 10T con redes
IPy APl en la nube.

Ademas, incorporan seguridad y control de acceso a través de la aplicacion de firewalls,
filtrado de trafico, autenticacién de dispositivos y mantenimiento de datos confidenciales en
las instalaciones cuando sea necesario.

El envio de datos desde un dispositivo Edge se puede realizar a través de diferentes
protocolos de comunicacion, como se ha comentado. Uno de los mas usado es MQTT basado
en TCP/IP. Es necesario instalar un broker tipo Mosquitto. Mosquitto es un agente de
mensajes de codigo abierto, ligero y escalable que implementa el protocolo MQTT
proporcionando un método simple para enviar mensajes utilizando un modelo de
publicacién/suscripcion. A continuacién, se muestra un codigo clasico de
publicacién/subscripcion de datos de sensores.

Ejemplo de codigo cliente:

import paho.mqtt.client as mqtt
def publish_message(MQTT_BROKER, MQTT_PORT, MQTT_TOPIC, data):
# Define callbacks first
def on_connect(client, userdata, flags, reason_code, properties):
print("Connected with result code", reason_code)

def on_message(client, userdata, msg):
print(msg.topic, msg.payload.decode())
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# Create client (Paho V2 API)

client = mqtt.Client(mqtt.CallbackAPIVersion.VERSIONZ, "pump_system")
# Assign callbacks

client.on_connect = on_connect

client.on_message = on_message

# Connect to the broker

client.connect(MQTT_BROKER, MQTT_PORT)

# Publish once

client.publish(MQTT_TOPIC, data)

print(f"Published: {data} to topic {MQTT_TOPIC}")

# Optional: process events briefly, then disconnect
client.loop(timeout=2)

client.disconnect()

Ejemplo cédigo suscripcion:

def on_connect(client, userdata, flags, reason_code, properties):
print(f"Conectado al broker, codigo: {reason_code}")
client.subscribe(topic)

print(f"Escuchando en el topic '{topic}'...")

# Crear el cliente y establecer callbacks

cliente = mqtt.Client(mqtt.CallbackAPIVersion.VERSIONZ2,"timeseries_subscriber")
cliente.on_connect = on_connect

cliente.on_message = on_message

# Conectar al broker

cliente.connect(broker, puerto)

Para esto es necesario definir el bréker, el puerto, el topicy el cliente.
# Configuracién del broker y topic

broker ="" # IP del broker

puerto = 1883 # Puerto por defecto

topic = "data"

client = "timeseries_subscriber"

Es importante que el topic sea Unico y esté bien identificado, puesto que puede haber varios
topics asociados a un mismo cliente.

Es necesario abrir un puerto para realizar esta comunicacion. El mas sencillo es el 1883, pero
se puede incrementar la seguridad empleando el puerto 8883 e incorporando el uso de
usuario/contrasefia o certificados.
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3. Entornos de simulacion

Los entornos de modelado acausal basado en ecuaciones de sistemas complejos
multidominio son plataformas que permiten a los ingenieros examinar la dindmica de
sistemas, verificar estrategias de control y predecir el rendimiento en multiples dominios
fisicos sin necesidad de un prototipado exhaustivo. Ofrecen bibliotecas para una amplia
gama de aplicaciones, como la termodinamica, la mecanica de fluidos y la ingenieria
eléctrica. Estas herramientas pueden ser de cddigo abierto como OpenModelica o con
licencia comercial como Simcenter Amesim. En el primer caso, al ser de cédigo abierto, es
ideal para la investigacion académica, el desarrollo de algoritmos y la validacion de nuevas
metodologias de modelado. El segundo caso, emplea un enfoque de modelado grafico que
permite a los usuarios construir modelos a nivel de sistema utilizando componentes
validados. La plataforma se integra con herramientas MATLAB/Simulink y CAD/CAE, lo que
permite el andlisis a nivel de sistema dentro de marcos mas amplios de gemelos digitales.

En los softwares de simulacion que trabajan con librerias no es necesario desarrollar el
codigo con las ecuaciones que gobiernan los elementos de un sistema, sino tan solo definir
los parametros de esas ecuaciones (Figura 3), que se corresponden con los parametros de
funcionamiento del elemento. Cada componente de las librerias viene definido con unas
variables de entrada y de salida (Figura 2), que van a definir con qué otros elementos de
otras librerias van a ser compatibles o no. Los valores de esas variables van a permitir
determinar si el componente se esta simulando correctamente o no.

Figura 2. Variables de entrada y salida de una bomba de la libreria de Hidraulica
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Figura 3. Pardmetros a definir en una bomba de la libreria de Hidraulica.

Habitualmente en este tipo de software se facilita el intercambio de modelos y la
cosimulacién mediante interfaces estandarizadas como la Interfaz de Maqueta Funcional (el
estandar FMI), lo que permite la interoperabilidad con otros entornos de simulacion (Figura
4).
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Figura 4. M6dulo FMU en el software de simulacién

El FMU es la unidad de intercambio para modelos de simulacién que surge del estandar FMI.
Este FMU se puede exportar como co-simulacion o model Exchange, dependiendo de las
funcionalidades que se busquen.
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Figura 5. Configuracion del estdndar FMI en Simcenter Amesim

En Model Exchange, el FMU solo aporta el modelo (ecuaciones) y el solver lo pone la
herramienta que importa.

e El FMU expone funciones para calcular derivadas de los estados continuos, pero no
integra en el tiempo; la integracion numérica (paso de tiempo, tolerancias, método) la
controla el entorno de ejecucion.

e Esta modalidad suele dar mejor rendimiento y control numérico, porque el solver puede
optimizar el sistema combinado de varios FMUs dentro de la misma herramienta.

En Co-Simulation, cada FMU lleva su propio solver interno e integra su modelo de forma

auténoma.

e El entorno de simulaciéon actia como master, avanza el tiempo global y pide a cada FMU
gue simule hasta el siguiente punto de comunicacion, donde se intercambian entradas y
salidas.

e Esto encapsula mejor a cada subsistema (incluso con diferentes solvers o pasos de
tiempo), pero puede introducir retos de estabilidad y rendimiento, y suele requerir
algoritmos de acoplamiento mas sofisticados.
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En la Tabla 1 se puede ver un resumen de las principales caracteristicas de modo de
exportacion de un FMU.

Aspecto

Model Exchange (FMI)

Co-Simulation (FMI)

Solver

Lo aporta la herramienta
importadora.

\Va embebido en
cada FMU.

Integracion en el
tiempo

El importer integra las ecuaciones
del FMU.

El FMU integra sus
propios estados y
devuelve los valores
actualizados.

Encapsulamiento

Menor encapsulamiento, mayor
integraciéon numérica global.

Fuerte
encapsulamiento de
IP y algoritmos
internos.

Acoplamiento de
FMUs

El solver puede tratar varios FMUs
como un unico sistema grande.

Se basa en algoritmo
maestro con puntos
de comunicacion
discretos.

Casos de uso
tipicos

Analisis detallado, simulacion
continua precisa dentro de una
misma herramienta.

Integracion de
herramientas
heterogéneas y
subsistemas ya
validados.

Tabla 1. Comparativa de los dos modos de exportacion de un FMU.

La ultima version del estandar, FMI 3.0, aflade un tercer tipo de interfaz, Scheduled
Execution, para sistemas puramente discretos y casos cercanos a tiempo real, ademas de
Model Exchange y Co-Simulation. También introduce mejoras para co-simulacion avanzada
(acceso a variables intermedias, eventos, clocks, datos binarios, arrays y estandares en capas)
que facilitan acoplamientos mas robustos entre FMUs
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4. Entornos de ejecucion

Cualquier entorno de simulacién puede ser un entorno de ejecucion empleando el
encapsulamiento del estandar FMI. Sin embargo, esto puede resultar limitante debido a la
necesidad de licencias o conectividad con API’s, etc. En general, resulta mas sencillo trabajar
con entornos open source, donde se pueda adaptar o introducir codigo especifico para
nuestra implementacion. Es por este motivo que un entorno abierto como Python se
convierte en una herramienta muy util debido a que ofrece una amplia variedad de librerias
con funciones que permiten adquirir, limpiar y filtrar datos, ejecutar FMU y realizar analisis
estadisticos o de otro tipo a continuacidén. En definitiva, resulta mas versatil para cualquier
despliegue de esta tecnologia.

A continuacién se muestra un extracto de c6digo en Python para ejecucion de un FMU.

from fmpy import *

# FMU file

fmu_filename = 'Circuito_laboratorio.fmu'

# Load FMU

model_description = read_model_description(fmu_filename)

unzipdir = extract(fmu_filename)

# Instantiate the model

fmu = instantiate_fmu(unzipdir, model_description, fmi_type="CoSimulation")

# Create input signal: time array and the corresponding input values

time_steps = np.linspace(0.0, 1, num=10) # 10 steps between 0 and 1 second

# Define the two input values

valve_opening_target_values = np.full_like(time_steps, 50) # Constant value of 50 across all

time steps

pump_speed_values = np.full_like(time_steps, 2000)  # Constant value of 2000 across all

time steps

# The input needs to be a structured numpy array with 'time' and the input variable names

as field names

input_values=np.array(list(zip(time_steps,valve_opening_target_values, pump_speed_values)),
dtype=[('time’, np.float64),

(‘amesim_interface.Valve_opening', np.float64),
(‘amesim_interface.Motor_rpm’, np.float64)])

# Simulate

result = simulate_fmu(fmu_filename, start_time=0.0, stop_time=1, input=input_values)
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5. Analitica

El andlisis de datos procedente de un gemelo digital puede ser muy util al disponer de datos
reales y datos simulados, lo que da lugar a historicos muy completos. Para esto es necesario
almacenar estos datos de forma ordenada para poder acceder a ellos facilmente. Lo habitual
es que se trabaje con datos estructurados, los que proceden de sensores lo son, por lo que
una base de datos SQL es una buena opcion.

A continuacién, se muestra un ejemplo de codigo para la creacion de una BD SQL.

import sqlite3

from sqlite3.dbapi2 import Timestamp
import pandas as pd

from datetime import datetime
import socket

# Create a SQLite database
conn = sqlite3.connect('machine1_database.db')
cursor = conn.cursor()
# Create a table for winch data
cursor.execute(
"""CREATE TABLE IF NOT EXISTS machine1_data (
id INTEGER PRIMARY KEY AUTOINCREMENT,
Timestamp TEXT,
sensor_id TEXT,
value INTEGER)")
conn.commit()

# Insert data into the table
def insert_data(sensor_id, value):
Timestamp = datetime.now().isoformat()
cursor.execute(
""INSERT INTO machinel1_data (Timestamp, sensor_id, value) VALUES (?, ?, 2)""",
(Timestamp, sensor_id, value)

)

conn.commit()

# Consultar los datos
def query_data():
df = pd.read_sql_query("SELECT * FROM machine1_data", conn)

print(df)
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El analisis de los datos, tanto en tiempo real como historicos, se debe enfocar dependiendo
de las funcionalidades buscadas en el gemelo. De forma general, este analisis se puede
enfocar en 4 grandes bloques, como son prediccién de fallo, analisis de escenarios, analisis
de datos procedentes de sensores virtuales y optimizacion de la operativa y/o energia
consumida.

Con un gemelo digital se puede analizar la degradacién progresiva de un equipo para
determinar en qué momento puede alcanzar un fallo catastréfico. Para esto se pueden
utilizar modelos de regresion (como LSTMs o modelos de degradacién fisica) sobre los
historicos de las variables (vibracion, temperatura, etc.) para proyectar la tendencia futura.
Ademads, permite planificar el mantenimiento justo antes de la rotura (Just-in-Time
maintenance) en lugar de hacerlo por calendario o esperar al fallo.

El analisis de escenarios (What-if analisis) es posible debido a que tenemos una réplica virtual
de la fisica de la maquina, por lo que es posible simular escenarios que serian peligrosos o
costosos en la realidad. Aqui es donde entran los modelos fisicos encapsulados conectados a
modelos de ML (Machine Learning). Es decir, partiriamos de un modelo fisico (ej.
Modelica/Simulink) exportado en co-simulacién (FMI) que alimentaria a un ML para ese
analisis de escenarios.

A menudo no podemos poner sensores en todas partes (por coste o inaccesibilidad, como
dentro de un pistén). En un gemelo digital se pueden usar los datos que si se tienen
(corriente, velocidad, temperatura externa, etc.) junto con modelos fisicos o de IA para
estimar variables que no se miden. Por ejemplo, calcular el par motor interno o la
temperatura en el nucleo del bobinado basandose solo en la corriente y la temperatura de la
carcasa.

Un gemelo puede tener como funcionalidad analizar la eficiencia de una maquina o sistema.
Para esto, se deben detectar puntos de operacion ineficientes. Por ejemplo, detectar que un
ventilador consume un 5% mas de energia de lo que deberia para ese flujo de aire, indicando
filtros sucios mucho antes de que la vibracién sea una alarma. El gemelo podria sugerir (o
ajustar automaticamente) los parametros de control (PID) para minimizar el consumo
energético sin afectar la produccién.

A continuacién se muestra un ejemplo de cédigo en Python con un analisis de las variables
de un equipo para la deteccion de fallo en éste.
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import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')
def diagnosticar_fallo(self, temperatura, vibracion, ruido, horas, tipo_maquina, umbrales):
"""|dentifica tipos especificos de fallo"""
problemas =[] if temperatura > umbrales['temp_max']:
problemas.append('Sobrecalentamiento detectado’)
if temperatura < umbrales['temp_min']:
problemas.append('Temperatura anormalmente baja')
if vibracion > umbrales['vibracion_max'] * 1.5:
problemas.append(' t* Desequilibrio o desalineacion severa')
elif vibracion > umbrales['vibracion_max']:
problemas.append('Vibracion elevada - posible desgaste’)
if ruido > umbrales['ruido_max']:
problemas.append('Ruido anédmalo detectado’)
if horas > umbrales['horas_mantenimiento']:
problemas.append('Mantenimiento preventivo vencido')
return problemas if problemas else ['Sin anomalias detectadas']

6. Visualizacion

El gemelo digital necesita interactuar con operarios, técnicos, disefiadores, etc. por lo que
una visualizacidon que permita acceder a la informacién relevante de forma sencilla, facil de
interpretar, es fundamental. Para esto se puede emplear desde graficas hasta realidad
aumentada o virtual, dependiendo de la funcionalidad buscada en el gemelo. Habitualmente
un dashboard bien configurado es suficiente.

LOAD WINCHES

Figura 6. Dashboard de seleccién de equipo
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7. Ciberseguridad

Cualquier gemelo digital, al tener una parte 10T crea un puente bidireccional entre el mundo
fisico y el mundo digital, y esto implica vulnerabilidad. Al replicar no solo el estado sino
también el comportamiento de un activo, el gemelo se convierte en el mapa perfecto para un
atacantey, simultdneamente, en la puerta trasera definitiva hacia la maquinaria critica.

Tradicionalmente, para sabotear una turbina o una red eléctrica, un atacante necesitaba
meses de ingenieria inversa para entender el sistema. Con un Gemelo Digital comprometido,
el atacante obtiene instantaneamente acceso a modelos CAD, algoritmos de control
propietarios y parametros de disefio, es decir, a la propiedad intelectual de aquellos que han
desarrollado el gemelo. Ademas, se puede usar el gemelo como "banco de pruebas”
(Sandboxing malicioso) para simular ciberataques contra el activo virtual hasta encontrar
uno exitoso, sin arriesgarse a ser detectado en el sistema real.

En ciberseguridad estandar se protegen los datos. En Gemelos Digitales, la violacién de datos
puede tener consecuencias fisicas. Si un atacante altera los datos del gemelo (data
poisoning), puede inducir errores catastroficos. Por ejemplo, el gemelo muestra que la
maquina esta a 50°C (datos inyectados), mientras el activo real esta ardiendo a 200°C. El
operador no detiene la maquina porque confia en el gemelo. Si el gemelo tiene capacidades
de control (nivel 3-4), una orden corrupta enviada desde el entorno virtual puede cambiar
setpoints fisicos, desactivar frenos o alterar mezclas quimicas.

Los estandares como FMI intercambian modelos matematicos (FMUs). Un archivo FMU
malicioso podria contener cédigo ejecutable que, al ser cargado por el orquestador de
simulacién, inyecte malware en el sistema host.

Dentro de la capa IoT los sensores estan conectados al borde Edge, si no estan asegurados
sirven como punto de entrada para inyectar datos falsos que corrompen la simulacion
global.

Una arquitectura habitual en un gemelo es que este resida en la nube para aprovechar la
potencia de calculo. Las interfaces entre el sistema real y la nube son el punto de
estrangulamiento donde ocurren la mayoria de las intrusiones.

Se pueden usar diferentes estrategias para evitar un ciberataque. Se puede optar por una
arquitectura Zero Trust, donde se asume que ninguna sefal, ni siquiera las que vienen de
dentro del sistema fisico, es confiable hasta que se verifique criptograficamente. También se
puede optar por realizar verificaciones cruzadas, es decir, si un sensor indica una vibracién
extrema pero el consumo de corriente del motor no ha subido, el gemelo puede detectar esa
"imposibilidad fisica" y marcar el sensor como "probablemente hackeado" en lugar de activar
una alarma mecanica. Hoy en dia, también es posible entrenar una IA de defensa para
reconocer patrones de intrusion (anomalias en el trafico de red o en la fisica del sistema)
antes de que ocurran en la realidad.
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La implementacion de un Gemelo Digital no es solo un reto de ingenieria mecanica o de
software, es fundamentalmente un reto de ciber-resiliencia. Un gemelo inseguro es, en
esencia, una "puerta trasera" documentada y abierta hacia el corazén del cualquier sistema

fisico.
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A implementa¢do de um piloto de manutenc¢do preditiva envolve um conjunto de fases
encadeadas que vao desde a definicao do equipamento, passando pela recolha e tratamento
dos dados, até a criacdo dos modelos preditivos e sua integracdo operacional. Este guia
descreve, em detalhe, cada uma dessas fases, bem como as tecnologias e metodologias
recomendadas para garantir um piloto realista, funcional e validado em ambiente industrial.

1. Definicao do Equipamento e Objetivos do Piloto

A implementacdo de um piloto de manutencdo preditiva no setor naval exige uma fase inicial
extremamente rigorosa, uma vez que todo o sucesso do projeto depende da clareza com
que se definem os seus limites, os objetivos operacionais e o equipamento envolvido. Antes
de considerar algoritmos, tecnologias ou modelos, é indispensavel compreender o ambiente
maritimo, caracterizado por condi¢bes severas, restricdes logisticas e elevada criticidade
operacional. Por isso, esta primeira fase dedica-se a estabelecer o enquadramento técnico e
estratégico, garantindo que o piloto é ao mesmo tempo realizavel e representativo das
necessidades reais da embarcacao.

O primeiro passo consiste em selecionar o equipamento ou subsistema a monitorizar. Esta
escolha deve ter em conta a relevancia do equipamento para a seguranca e funcionamento
do navio. Muitos sistemas a bordo, tais como motores auxiliares, bombas hidraulicas,
compressores de ar ou ventiladores de refrigeracdo funcionam continuamente e estao
sujeitos a desgaste natural. Equipamentos deste tipo sao candidatos ideais, tanto pela sua
importancia como pela previsibilidade dos seus modos de falha. Em navios mercantes,
embarcacbes offshore ou plataformas maritimas, a escolha tende a recair em componentes
cuja falha tem consequéncias diretas na operacdo, como bombas de refrigeracao de agua do
mar, motores geradores ou sistemas de ar comprimido. Além disso, deve ser considerado o
grau de acessibilidade a bordo, pois algumas areas da casa de maquinas apresentam
espacos reduzidos, limitacbes de seguranca ou temperaturas elevadas que dificultam a
instalacdo de sensores ou gateways.

Apés a selecdo do sistema-alvo, € necessario identificar quais variaveis operacionais melhor
representam o estado de saude desse equipamento. Em ambiente naval, esta identificacdo é
particularmente importante, pois muitos fatores externos como as condi¢cBes de mar, a
vibracdo estrutural do casco, o calor na casa de maquinas e as varia¢des bruscas de carga,
afetam o comportamento dos equipamentos. Assim, a escolha das variaveis deve equilibrar
relevancia técnica, viabilidade de medicdo e sensibilidade a degradacdo. Por exemplo, a
vibracdo de rolamentos é essencial para motores e bombas; a corrente elétrica diz muito
sobre o esforco mecanico de motores; a temperatura revela desgaste ou problemas de
lubrificacdo; a pressdao e o caudal sdo fundamentais para sistemas hidraulicos e de
refrigeracdo. E também importante considerar varidveis ambientais e de operacao, tais como
a temperatura da sala de maquinas, as condicBes de navegacdo ou o regime de
funcionamento (manobra, cruzeiro ou porto), pois estas influenciam diretamente o perfil dos
dados.
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Esta fase deve igualmente avaliar as limita¢des praticas da opera¢ao maritima. Diferente de
ambientes industriais em terra, o navio opera em isolamento, com comunicac¢des limitadas e
dependentes de satélite, sujeitas a laténcias elevadas ou instabilidade. Assim, torna-se
necessario definir desde o inicio que parte do processamento sera feita localmente, em
dispositivos edge, e que dados serdo enviados para sistemas em terra. Além disso, o
equipamento instalado deve cumprir normas maritimas e de seguranca, especialmente
quando colocado em zonas de risco, como areas com potencial de atmosfera explosiva ou
locais sujeitos a vibracdes extremas. Todas estas restricdes devem ser conhecidas antes do
inicio do piloto, para evitar solu¢des tecnicamente inadequadas ou incompativeis com os
regulamentos navais.

Paralelamente, é fundamental definir os objetivos técnicos e operacionais do piloto. A
manutencdo preditiva pode assumir varias abordagens: detecdo precoce de anomalias,
previsdo de falhas com antecedéncia, estimativa da vida Util remanescente ou otimizacao de
periodos de manutencdo durante escalas em porto. No setor naval, estes objetivos sao
particularmente valiosos, pois permitem reduzir paragens inesperadas durante a navegacao,
evitar penalizacdes por falhas operacionais, otimizar janelas de manutencdo portuaria e,
sobretudo, aumentar a fiabilidade de sistemas que, quando falham, colocam em risco nao
apenas a operacao, mas também a seguranca da tripulacao e da embarcacdo.

Outro elemento fundamental nesta fase é a definicdo da durac¢ao do piloto e da estratégia de
recolha de dados. Em navios, os equipamentos operam em diferentes regimes ao longo de
uma viagem, pelo que é essencial recolher dados durante um periodo suficientemente longo
para abranger todas as condi¢fes relevantes: operacao continua em mar alto, mudancas de
carga durante manobras, arranques e paragens frequentes em porto, variacdes de
temperatura e humidade, entre outros fatores. Geralmente, recomenda-se uma duragao
entre trés e seis meses, dependendo da frequéncia de operacdao do equipamento
selecionado. Um periodo demasiado curto pode ndo ser suficiente para identificar padrées
de degradacao ou para alimentar modelos que exigem diversidade de cenarios.

Por fim, esta fase exige um alinhamento com os principais intervenientes do setor naval. A
colaboracdo entre estes agentes garante a aceitacdo do sistema, a viabilidade operacional da
instrumentacdo e o cumprimento de todas as normas de seguranca e certificagdo maritima.
Além disso, assegura que o piloto responde a necessidades reais e pode ser escalado
posteriormente para outros equipamentos ou embarcag¢des da frota.
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2. Andlise e Planeamento da Recolha de Dados

Depois de definidos os objetivos operacionais, a fase seguinte consiste numa analise técnica
aprofundada que permitira determinar como os dados serdo obtidos, qual infraestrutura
serd necessaria a bordo e que constrangimentos precisam de ser considerados na recolha
continua de informag¢do. Esta fase é critica, porque a manutencdo preditiva depende
inteiramente da qualidade, consisténcia e representatividade dos dados recolhidos. Se esta
etapa nao for tratada com rigor, todo o projeto ficara comprometido, mesmo que 0s
modelos preditivos sejam avancados ou tecnologicamente sofisticados.

O ponto de partida desta analise consiste em avaliar a infraestrutura existente no navio e a
sua capacidade para suportar monitorizacdo continua. Assim, € necessario compreender
cuidadosamente o que ja existe: sensores funcionais, localizacao fisica dos painéis de
controlo, pontos de acesso Modbus ou OPC-UA, e disponibilidade de portas livres, tanto em
termos elétricos como de rede.

Apés esta avaliacdo da infraestrutura, passa-se a decisdo sobre que sensores serao
adicionados. A instalacdo ndo pode interferir com a operacao normal do equipamento,
especialmente em sistemas criticos. Com os sensores definidos, a fase seguinte consiste na
escolha de um sistema de aquisicdo e transmissdo de dados, geralmente baseado em
dispositivos edge. Estes dispositivos, que podem ser computadores industriais, unidades
embarcadas |oT ou equipamentos dedicados de fabricantes maritimos, desempenham duas
funcbes essenciais: por um lado, recolhem dados dos sensores, agregam-nos e pré-
processam-nos localmente; por outro, enviam-nos para servidores externos ou sistemas de
monitorizacdo conforme a disponibilidade da conectividade.

A decisao sobre o protocolo de comunicacdo é igualmente importante. Em ambiente naval,
onde a conectividade &, por vezes, instavel ou intermitente, protocolos leves e resilientes,
como MQTT, podem ser preferidos para envio de dados em tempo real. OPC-UA é mais
utilizado para integracdo com sistemas existentes a bordo, oferecendo maior seguranca e
interoperabilidade industrial.

Outro elemento critico nesta fase é a definicdo das frequéncias de amostragem.
Equipamentos navais apresentam diferentes dinamicas fisicas, e a taxa de recolha deve
evitar dados insuficientes ou desnecessariamente volumosos. Dados de vibracdo, usados
para detetar falhas em rolamentos ou desalinhamentos, requerem amostragens elevadas
enquanto variaveis como temperatura ou pressdao podem ser registadas com muito menor
frequéncia. A definicdo incorreta da amostragem pode comprometer toda a capacidade
diagnostica, pelo que esta decisdo deve ser feita em conjunto com engenheiros de bordo e
especialistas em analise de sinais.
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Com as questdes de sensorizacao e transmissao resolvidas, torna-se fundamental planear o
armazenamento dos dados, tanto localmente quanto remotamente. A bordo, o
armazenamento temporario deve ser dimensionado para garantir que a perda de
conectividade ndao compromete o piloto. Em terra, a escolha entre bases de dados locais ou
de cloud depende das politicas da empresa e dos requisitos regulatérios. A utilizacdao de
bases de dados de séries temporais, como InfluxDB ou TimescaleDB, é amplamente
recomendada, dada a natureza regular e continua das medi¢des. Estas bases facilitam o
processamento subsquente, permitindo agregacdes rapidas e extra¢do eficiente de grandes
volumes de dados.

Finalmente, esta fase deve considerar o mapeamento completo do ciclo de dados, desde a
origem no sensor até ao processamento final, garantindo que cada etapa é tecnicamente
viavel a bordo. Deve-se identificar claramente como serdo tratadas quest8es como perda de
pacotes, laténcia, sincronizacdo entre sensores e capacidade energética dos dispositivos
adicionais. A analise técnica nesta fase ndo requer ainda decisGes sobre modelos preditivos,
mas deve preparar as condi¢des que garantem que esses modelos serdo alimentados com
dados de qualidade, consistentes e representativos do ambiente real de operacdo naval.

3. Arquitetura Técnica e Desenvolvimento da Infraestrutura de Dados

A construcao da arquitetura técnica representa um dos pilares centrais de qualquer piloto de
manutencdo preditiva, pois define de que forma os dados serdo captados, processados,
armazenados, modelados e disponibilizados as equipas de operacdao e manutencdo. No
contexto naval, esta fase assume particular importancia devido a diversidade dos sistemas, a
complexidade das condi¢cdes de funcionamento e as limitacdes fisicas e tecnoldgicas que
caracterizam o ambiente maritimo. Uma arquitetura bem delineada garante nao sé o correto
funcionamento do piloto, mas também a sua escalabilidade para outros equipamentos ou
mesmo para toda a frota.

O ponto de partida para a definicdo da arquitetura é o desenho do fluxo completo de dados,
desde o sensor instalado no equipamento até ao modelo preditivo que operara no servidor
ou no sistema edge. Esse fluxo deve ser robusto o suficiente para lidar com as condi¢Ges
desafiantes a bordo, como vibracdes, variacbes de energia, ruido eletromagnético e
conectividade intermitente. Assim, é fundamental estabelecer uma cadeia de recolha que
inclua sensores industriais robustos, sistemas adequados de aquisi¢ao de dados, dispositivos
de computacao periférica (edge computing) e mecanismos de sincronizacao e envio para
plataformas em terra. Cada um destes elementos deve ser compativel tanto com as
condig¢des fisicas do navio como com os protocolos de comunica¢do e seguranca exigidos.

Apo6s a definicdo do caminho dos dados, passa-se a criacdo da infraestrutura de
processamento local, geralmente designada por camada edge. Esta camada é essencial na
industria naval, uma vez que o navio ndao pode depender exclusivamente da liga¢cdo a terra

para processar medi¢cdes em tempo real.



Fatima Leal - Universidade Portucalense
Twin NavAux

Assim, equipamentos como computadores industriais compactos, PLCs programaveis sao
utilizados para recolher os dados dos sensores, realizar pré-processamento inicial (como
filtragem, agregacdo ou detecdo preliminar de anomalias) e assegurar que os dados sao
armazenados temporariamente quando a conectividade é insuficiente. A capacidade de
computacdo desta camada deve ser dimensionada para suportar operacfes continuas e,
sempre que possivel, hospedar versdes simplificadas dos modelos preditivos, permitindo
analises imediatas mesmo em mar alto.

A arquitetura deve igualmente especificar os protocolos de comunicacao utilizados em cada
ligacdo. Em muitos navios, coexistem tecnologias de diferentes geracdes, desde sistemas
legacy baseados em Modbus RTU a redes modernas com OPC-UA. A integracdo destes
sistemas requer planeamento cuidadoso, especialmente quando o piloto pretende ser
compativel com uma frota heterogénea. Protocolos como MQTT sdo frequentemente
adotados para o envio de dados para servidores externos, devido a sua eficiéncia, tolerancia
a falhas e baixa exigéncia de largura de banda. J& OPC-UA é ideal para recolher dados de
sistemas automaticos existentes, oferecendo interoperabilidade e normas de seguranca
robustas. A escolha destes protocolos deve considerar ndo apenas a eficiéncia, mas também
requisitos de ciberseguranca, uma vez que navios sao cada vez mais alvos de ataques
cibernéticos.

Definido o fluxo local, a fase seguinte consiste em desenhar a camada de armazenamento e
processamento em terra, que sera responsavel pela analise historica, treino dos modelos
preditivos e execucdo de algoritmos mais pesados do ponto de vista computacional. E nesta
camada que se integra uma base de dados de séries temporais, normalmente implementada
atraves de solu¢des como InfluxDB, TimescaleDB ou bases cloud otimizadas para dados IoT.
O armazenamento em terra permite concentrar grandes volumes de dados de varias
embarcacbes, permitindo comparacdes entre equipamentos, benchmarking interno e a
construcao de modelos transversais. A0 mesmo tempo, esta camada funciona como
repositério central para dashboards operacionais, sistemas de alerta e ferramentas de
analise avancada.

A arquitetura técnica deve ainda contemplar o mecanismo de transferéncia de dados entre o
navio e a infraestrutura em terra. Esta transferéncia pode ocorrer de forma continua,
quando a embarcacdo dispde de conectividade satélite estavel, ou pode ser realizada em
modo assincrono, com sincronizagdes periddicas, por exemplo, quando o0 navio esta em
porto. Esta decisdo depende do tipo de dados recolhidos, da frequéncia de amostragem e
das necessidades operacionais do piloto. Para dados de vibracao de alta frequéncia, por
exemplo, ndo é realista enviar tudo para terra em tempo real; nesses casos, parte do
processamento deve ocorrer localmente, enviando-se apenas métricas agregadas e
indicadores de saude.
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Um elemento essencial desta fase é a definicdo dos servicos de aplicacdo e camadas de
visualizacdo. Estes servicos serdo responsaveis por apresentar, de forma intuitiva e acessivel,
a informacdo proveniente dos sensores e dos modelos. Em ambientes navais, onde os
operadores podem estar sob forte carga de trabalho, dashboards claros e bem estruturados
sdo fundamentais. Assim, a arquitetura deve incluir ferramentas de visualizacdo como
Grafana, Power Bl ou plataformas proprietarias integradas com o sistema de automacdo do
navio. Além disso, a arquitetura deve permitir integrar facilmente funcionalidades adicionais,
como alarmes preditivos, relatérios automaticos de tendéncia ou sistemas de apoio a
decisdao baseados em inteligéncia artificial.

Outro fator importante a considerar € a interoperabilidade com sistemas existentes a bordo
e em terra. Os sistemas de gestdao de manutenc¢ao (CMMS), como o Maximo, ManWinWin ou
SAP PM gerem ordens de trabalho, inventario e planeamento. A arquitetura técnica deve,
idealmente, permitir a integracdo com estes sistemas, automatizando fluxos como a
abertura de uma ordem de manutencdo quando o modelo preditivo identifica uma
degradacdo relevante. A integracdo pode ocorrer atraves de APIs, conectores middleware ou
interfaces dedicadas, conforme a maturidade digital da frota.

Por fim, a arquitetura deve contemplar mecanismos de ciberseguranca e resiliéncia,
especialmente porque navios operam em ambientes isolados e sdo cada vez mais alvo de
ataques direcionados. Isto inclui encripta¢do dos dados, autenticacdo forte nos dispositivos
edge, firewalls maritimas certificadas e politicas de segmentacdo das redes do navio,
garantindo que o piloto de manutencao preditiva ndo introduz vulnerabilidades no
ecossistema operacional da embarcacao.

Quando concluida, esta fase entrega uma arquitetura coerente, robusta e adaptada as
limitacdes do ambiente naval, estabelecendo os alicerces que permitem, nas fases seguintes,
desenvolver os modelos preditivos e integra-los com os sistemas reais de bordo.

4. Desenvolvimento dos Modelos Preditivos

Depois de estabelecida a arquitetura técnica e assegurado o fluxo de dados entre sensores,
dispositivos edge e sistemas de armazenamento, inicia-se a fase dedicada ao
desenvolvimento dos modelos de simulacdo e dos modelos preditivos. Esta é uma etapa
determinante no piloto de manutencao preditiva, pois traduz a informacdo recolhida em
conhecimento acionavel sobre o estado dos equipamentos, permitindo antecipar falhas,
detetar anomalias, estimar degradac¢do e apoiar decisdes de manutencdo em tempo util. A
abordagem de modelacdo nesta fase depende fortemente da quantidade e qualidade dos
dados recolhidos, bem como da complexidade fisica do equipamento monitorizado e das
suas condi¢des de operacdo a bordo.
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Analise Exploratéria de Dados e pré-processamento

O primeiro passo consiste na analise exploratéria dos dados disponiveis. Antes de treinar
qualquer modelo, é necessario compreender a estrutura temporal dos sinais recolhidos, a
sua variabilidade em diferentes regimes de operacdo, padrdes ciclicos relacionados com a
navegacdo do navio e possiveis anomalias decorrentes de eventos externos. Em ambiente
naval, esta etapa ganha especial relevancia, porque muitos fatores externos influenciam
diretamente os dados: alteracBes bruscas de carga durante manobras, vibracdes induzidas
pela rotacdo da hélice ou do eixo propulsor, condi¢des de mar adversas e impactes térmicos
devidos ao funcionamento prolongado da casa de maquinas. A segmentacdo dos dados por
regime operativo, por exemplo, navegacdo em cruzeiro, manobra ou porto, é essencial para
evitar que o modelo confunda varia¢Bes normais de operacdo com sinais de degradacao.

A partir desta analise inicial, procede-se ao pré-processamento aprofundado dos dados, que
pode incluir filtragem de ruido, normalizacdo, extracdo de caracteristicas espectrais e
construcdo de janelas temporais que sintetizam a evolucdo do equipamento ao longo do
tempo. Para sinais de vibracdo, recorre-se frequentemente a Transformada Rapida de
Fourier (FFT) ou a wavelets para analisar frequéncias especificas associadas a desequilibrios,
folgas ou desgaste de rolamentos. Ja em sinais elétricos, como corrente ou poténcia
consumida por motores, a extracdo de caracteristicas estatisticas (média, variancia,
assimetria, curtose) e a anadlise do comportamento sob diferentes cargas ajudam a indicar
padrdes de envelhecimento ou sobreaquecimento. Em suma, o pré-processamento
transforma sinais brutos em informag¢do estruturada e analiticamente significativa,
fundamental para o sucesso dos modelos preditivos.

Modelacao

Concluido o pré-processamento, passa-se a definicdo da estratégia de modelacdo. Em
manutenc¢do preditiva, os modelos podem seguir trés grandes abordagens: modelos de
detecdo de anomalias, modelos supervisionados e modelos de previsdao da vida Uutil
remanescente. A escolha entre estas abordagens depende sobretudo da disponibilidade de
dados historicos de falhas, que € muitas vezes limitada no setor naval. Em navios, falhas tém
impacto elevado e, por isso, sdao relativamente raras; além disso, os registos podem ser
incompletos ou ndo incluir sensores suficientes para reconstruir o comportamento exato no
periodo anterior a falha. Por esta razao, muitos pilotos navais comecam com modelos de
detecao de anomalias, que aprendem o comportamento normal do equipamento e sinalizam
desvios.

Modelos de detecao de anomalias incluem técnicas como Isolation Forest, One-Class SVM,
Local Outlier Factor ou autoencoders neuronais. Estas abordagens ndo requerem dados de
falha, mas sim um volume suficientemente grande de dados representando operag¢ao
normal. Apds o treino, o modelo cria uma espécie de “assinatura digital” do comportamento
esperado do equipamento e passa a detetar padrdes que escapam a essa normalidade.
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Num compressor de ar ou numa bomba de agua de refrigeracao, por exemplo, um aumento
subtil mas continuo de vibracdao em determinada banda de frequéncia pode ser sinal de
desgaste precoce, ainda impercetivel para a tripulacdo.

Quando existem dados rotulados , isto €, quando € possivel identificar periodos histéricos
em que ocorreram falhas ou degradac¢des relevantes, torna-se possivel treinar modelos
supervisionados. Estes modelos aprendem a distinguir entre estados saudaveis e estados
anomalos, classificando novos dados segundo o padrao aprendido. Algoritmos como
Random Forest, XGBoost ou Support Vector Machines sdao amplamente usados, ndo s6 pela
sua precisdo, mas também pela capacidade de explicar parcialmente quais variaveis mais
contribuem para a degradacdo. Esta interpretabilidade é especialmente valorizada no
ambiente naval, onde decisdes de manutencdo influenciam diretamente a seguranca da
embarcacao.

A terceira abordagem envolve a estimativa da vida util remanescente (Remaining Useful Life
(RUL)). Esta técnica é particularmente relevante em equipamentos sujeitos a desgaste
progressivo, como rolamentos, vedantes, sistemas hidraulicos e motores auxiliares com
longos ciclos de operac¢do. Modelos de RUL incluem regressdes avancadas, redes neuronais
recorrentes como LSTM ou GRU, e modelos probabilisticos baseados em distribuicdes de
Weibull ou Cox Proportional Hazards. A previsdo de RUL permite planear intervenc¢des
durante paragens previstas em porto, evitando avarias durante a navegacao e reduzindo
custos de manutencdo corretiva.

A construcdo e o treino dos modelos dependem de ferramentas adequadas. Em ambiente
académico e industrial, Python é a linguagem predominante, e bibliotecas como Pandas,
NumpPy, scikit-learn, TensorFlow, PyTorch, tsfresh e Prophet desempenham um papel central.
Estas bibliotecas permitem desde manipula¢do de dados a treino de redes neuronais
complexas, sempre com um ecossistema consolidado e amplamente validado. Para além
disso, ferramentas como MLflow podem ser utilizadas para acompanhar os resultados de
cada experiéncia, garantindo reprodutibilidade e rastreabilidade, aspetos criticos quando
modelos comecam a influenciar decisBes reais de manutencao.

Concluido o treino, o modelo precisa de ser validado com dados de teste e posteriormente
com dados reais em funcionamento continuo. No setor naval, essa validacdo deve considerar
diferentes estados de navegacdo, condicdes ambientais extremas e variacdes de carga
tipicas da operacdo. A validade de um modelo s6 pode ser confirmada se ele for capaz de
identificar padrdes de degradacdao em cendrios complexos e ndo linearmente
correlacionados. Apés validado, o modelo é preparado para ser integrado na arquitetura
definida anteriormente, podendo ser executado a bordo, no edge, ou num servidor remoto,
dependendo das necessidades e limitacdes da operacdo. Assim, a Fase 4 termina com a
criacdo de um conjunto de modelos preditivos, prontos para serem integrados no piloto.
Estes modelos constituem o nucleo da manutencdo preditiva e representam a inteligéncia
analitica que transforma dados operacionais do navio em recomendagdes, alertas e
previsdes capazes de melhorar a seguranca, eficiéncia e fiabilidade da embarcacao.
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