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Esta guía tiene como objetivo establecer las fases básicas para la implementación de un
gemelo digital para cualquiera de sus múltiples funcionalidades. Esto implica que
dependiendo del uso que se le vaya a dar al gemelo (monitorización, mantenimiento,
entrenamiento, etc.), se deberá adaptar cada una de las partes aquí descritas.

En la Figura 1 se muestra un flujo de datos sencillo que permite gestionar tanto los datos
procedentes de los sensores, como los generados por las simulaciones. Gestionar
correctamente el almacenamiento, tratamiento y visualización de estos datos es
fundamental.

Figura 1. Flujo de datos básico

1. Sensórica – IoT

Una vez seleccionados los sensores necesarios en el equipo/sistema físico debemos definir
cómo se procesan los datasets que se obtienen de esos sensores. Normalmente se registra
estos datasets como timeseries, es decir, el dato que envía el sensor se asocia a una escala
temporal. Los sensores, en general, envían las señales en voltios, lo que implica que
necesitan una calibración. A continuación, se muestra un extracto de código en Python para
la adquisición y calibración de los valores procedentes de un sensor (el ejemplo se
corresponde a una célula de carga).
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async def read_loop(self, stop_event):
    try:
      while not stop_event.is_set():
        line = self.ser.readline().decode('utf-8', errors='ignore').strip()
        if line and "Load:" in line:
          match = re.search(r'Load:\s*(-?\d+(?:\.\d+)?)', line)
          if match:
            try:
              self.signal_value = float(match.group(1))
              self.load_value = -0.0014 * self.signal_value - 267.33#calibración
              print(f"Signal: {self.signal_value:.3f}")
              print(f"Load: {self.load_value:.3f}")
            except ValueError:
              pass
        await asyncio.sleep(0.1)

Este código se puede ejecutar en el propio PLC o dispositivo conectado a los sensores. Un
PLC tipo Siemens Logo! permite una automatización simple, que interactúa con sensores
(temperatura, movimiento, luz, etc.) mediante sus entradas analógicas/digitales, procesa los
datos con bloques de función y controla actuadores, permitiendo monitoreo remoto y
comunicación vía Ethernet o GPRS para obtener datos en tiempo real.

La capacidad de computación que ofrecen hoy en día los PLC’s permite realizar un primer
pre-procesado de los datos procedentes de los sensores, es decir, un primer filtrado para
eliminar el posible ruido asociado a los datos obtenidos en bruto desde los sensores.
Un ejemplo sencillo de una primera “limpieza” de los datos es un filtro paso-bajo que suaviza
el ruido de alta frecuencia mientras mantiene la tendencia general de la señal del sensor. 

import numpy as np
def moving_average (signal, window_size=5):
"""Return signal smoothed with a simple moving average."""
window = np.ones (window_size) / window_size
   # mode='valid' shortens the output; use 'same' to keep same length
filtered = np.convolve (signal, window, mode='same')
return filtered
# Example: sensor_data is a 1D NumPy array with your readings
# sensor_data = np.array([...])
filtered_data = moving_average(sensor_data, window_size=10)

Se debe elegir el “window_size” según el nivel de suavizado que se necesite. Las “ventanas”
más grandes eliminan más ruido, pero también ralentizan o difuminan los cambios rápidos.
La librería Scipy de Python permite realizar filtrados más avanzados.
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2. Capa Edge

Un dispositivo Edge es un elemento hardware que se ubica en el límite de una red y conecta
equipos o usuarios locales con otras redes o la nube, a menudo procesando datos
localmente antes de enviarlos. Estos dispositivos actúan como puntos finales o puertas de
enlace donde los datos entran o salen de una red, ubicados cerca de fuentes de datos como
máquinas, sensores o usuarios. Pueden realizar tareas informáticas como agregar, filtrar y
analizar datos cerca de la fuente para reducir la latencia y el uso del ancho de banda.

Habitualmente en este tipo de despliegues se usan como puertas de enlace de IoT industrial
que vinculan PLC y sensores a plataformas en la nube y pueden ejecutar análisis básico
localmente.

Su uso principal es para procesamiento local de datos: preprocesamiento, agregación y
análisis en tiempo real para permitir respuestas rápidas y reducir el envío de datos a la nube.
La conectividad y la posibilidad de usar diferentes protocolos es uno de sus puntos fuertes.
Se pueden conectar buses de campo, protocolos industriales o redes locales de IoT con redes
IP y API en la nube.

Además, incorporan seguridad y control de acceso a través de la aplicación de firewalls,
filtrado de tráfico, autenticación de dispositivos y mantenimiento de datos confidenciales en
las instalaciones cuando sea necesario.

El envío de datos desde un dispositivo Edge se puede realizar a través de diferentes
protocolos de comunicación, como se ha comentado. Uno de los más usado es MQTT basado
en TCP/IP. Es necesario instalar un bróker tipo Mosquitto. Mosquitto es un agente de
mensajes de código abierto, ligero y escalable que implementa el protocolo MQTT
proporcionando un método simple para enviar mensajes utilizando un modelo de
publicación/suscripción. A continuación, se muestra un código clásico de
publicación/subscripción de datos de sensores.

Ejemplo de código cliente:

import paho.mqtt.client as mqtt
def publish_message(MQTT_BROKER, MQTT_PORT, MQTT_TOPIC, data):
  # Define callbacks first
  def on_connect(client, userdata, flags, reason_code, properties):
    print("Connected with result code", reason_code)

  def on_message(client, userdata, msg):
    print(msg.topic, msg.payload.decode())
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# Create client (Paho V2 API)
 client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION2, "pump_system")
 # Assign callbacks
 client.on_connect = on_connect
 client.on_message = on_message
 # Connect to the broker
 client.connect(MQTT_BROKER, MQTT_PORT)
 # Publish once
 client.publish(MQTT_TOPIC, data)
 print(f"Published: {data} to topic {MQTT_TOPIC}")

 # Optional: process events briefly, then disconnect
 client.loop(timeout=2)
 client.disconnect()
Ejemplo código suscripción:
def on_connect(client, userdata, flags, reason_code, properties):
 print(f"Conectado al broker, código: {reason_code}")
 client.subscribe(topic)
 print(f"Escuchando en el topic '{topic}'...")
# Crear el cliente y establecer callbacks
cliente = mqtt.Client(mqtt.CallbackAPIVersion.VERSION2,"timeseries_subscriber")
cliente.on_connect = on_connect
cliente.on_message = on_message
# Conectar al broker
cliente.connect(broker, puerto)

Para esto es necesario definir el bróker, el puerto, el topic y el cliente.
# Configuración del broker y topic
broker = " " # IP del broker 
puerto = 1883 # Puerto por defecto
topic = "data"
client = "timeseries_subscriber"

Es importante que el topic sea único y esté bien identificado, puesto que puede haber varios
topics asociados a un mismo cliente.

Es necesario abrir un puerto para realizar esta comunicación. El más sencillo es el 1883, pero
se puede incrementar la seguridad empleando el puerto 8883 e incorporando el uso de
usuario/contraseña o certificados.
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3. Entornos de simulación

Los entornos de modelado acausal basado en ecuaciones de sistemas complejos
multidominio son plataformas que permiten a los ingenieros examinar la dinámica de
sistemas, verificar estrategias de control y predecir el rendimiento en múltiples dominios
físicos sin necesidad de un prototipado exhaustivo. Ofrecen bibliotecas para una amplia
gama de aplicaciones, como la termodinámica, la mecánica de fluidos y la ingeniería
eléctrica. Estas herramientas pueden ser de código abierto como OpenModelica o con
licencia comercial como Simcenter Amesim. En el primer caso, al ser de código abierto, es
ideal para la investigación académica, el desarrollo de algoritmos y la validación de nuevas
metodologías de modelado. El segundo caso, emplea un enfoque de modelado gráfico que
permite a los usuarios construir modelos a nivel de sistema utilizando componentes
validados. La plataforma se integra con herramientas MATLAB/Simulink y CAD/CAE, lo que
permite el análisis a nivel de sistema dentro de marcos más amplios de gemelos digitales.

En los softwares de simulación que trabajan con librerías no es necesario desarrollar el
código con las ecuaciones que gobiernan los elementos de un sistema, sino tan solo definir
los parámetros de esas ecuaciones (Figura 3), que se corresponden con los parámetros de
funcionamiento del elemento. Cada componente de las librerías viene definido con unas
variables de entrada y de salida (Figura 2), que van a definir con qué otros elementos de
otras librerías van a ser compatibles o no. Los valores de esas variables van a permitir
determinar si el componente se está simulando correctamente o no.

Figura 2. Variables de entrada y salida de una bomba de la librería de Hidráulica
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Figura 3. Parámetros a definir en una bomba de la librería de Hidráulica.

Habitualmente en este tipo de software se facilita el intercambio de modelos y la
cosimulación mediante interfaces estandarizadas como la Interfaz de Maqueta Funcional (el
estándar FMI), lo que permite la interoperabilidad con otros entornos de simulación (Figura
4).

Figura 4. Módulo FMU en el software de simulación

El FMU es la unidad de intercambio para modelos de simulación que surge del estándar FMI.
Este FMU se puede exportar como co-simulación o model Exchange, dependiendo de las
funcionalidades que se busquen.
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Figura 5. Configuración del estándar FMI en Simcenter Amesim

En Model Exchange, el FMU solo aporta el modelo (ecuaciones) y el solver lo pone la
herramienta que importa.​

El FMU expone funciones para calcular derivadas de los estados continuos, pero no
integra en el tiempo; la integración numérica (paso de tiempo, tolerancias, método) la
controla el entorno de ejecución.​
Esta modalidad suele dar mejor rendimiento y control numérico, porque el solver puede
optimizar el sistema combinado de varios FMUs dentro de la misma herramienta.​

En Co‑Simulation, cada FMU lleva su propio solver interno e integra su modelo de forma
autónoma.​

El entorno de simulación actúa como master, avanza el tiempo global y pide a cada FMU
que simule hasta el siguiente punto de comunicación, donde se intercambian entradas y
salidas.​
Esto encapsula mejor a cada subsistema (incluso con diferentes solvers o pasos de
tiempo), pero puede introducir retos de estabilidad y rendimiento, y suele requerir
algoritmos de acoplamiento más sofisticados.​
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En la Tabla 1 se puede ver un resumen de las principales características de modo de
exportación de un FMU.

Tabla 1. Comparativa de los dos modos de exportación de un FMU.

La última versión del estándar, FMI 3.0, añade un tercer tipo de interfaz, Scheduled
Execution, para sistemas puramente discretos y casos cercanos a tiempo real, además de
Model Exchange y Co‑Simulation.​​ También introduce mejoras para co‑simulación avanzada
(acceso a variables intermedias, eventos, clocks, datos binarios, arrays y estándares en capas)
que facilitan acoplamientos más robustos entre FMUs
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4. Entornos de ejecución

Cualquier entorno de simulación puede ser un entorno de ejecución empleando el
encapsulamiento del estándar FMI. Sin embargo, esto puede resultar limitante debido a la
necesidad de licencias o conectividad con API’s, etc. En general, resulta más sencillo trabajar
con entornos open source, donde se pueda adaptar o introducir código específico para
nuestra implementación. Es por este motivo que un entorno abierto como Python se
convierte en una herramienta muy útil debido a que ofrece una amplia variedad de librerías
con funciones que permiten adquirir, limpiar y filtrar datos, ejecutar FMU y realizar análisis
estadísticos o de otro tipo a continuación. En definitiva, resulta más versátil para cualquier
despliegue de esta tecnología.

A continuación se muestra un extracto de código en Python para ejecución de un FMU.

from fmpy import *
# FMU file
fmu_filename = 'Circuito_laboratorio.fmu'
# Load FMU
model_description = read_model_description(fmu_filename)
unzipdir = extract(fmu_filename)
# Instantiate the model
fmu = instantiate_fmu(unzipdir, model_description, fmi_type="CoSimulation")
# Create input signal: time array and the corresponding input values
time_steps = np.linspace(0.0, 1, num=10) # 10 steps between 0 and 1 second
# Define the two input values
valve_opening_target_values = np.full_like(time_steps, 50) # Constant value of 50 across all
time steps
pump_speed_values = np.full_like(time_steps, 2000)    # Constant value of 2000 across all
time steps
# The input needs to be a structured numpy array with 'time' and the input variable names
as field names
input_values=np.array(list(zip(time_steps,valve_opening_target_values, pump_speed_values)),
                              dtype=[('time', np.float64), 
('amesim_interface.Valve_opening', np.float64), 
                              ('amesim_interface.Motor_rpm', np.float64)])
# Simulate
result = simulate_fmu(fmu_filename, start_time=0.0, stop_time=1, input=input_values)
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5. Analítica

El análisis de datos procedente de un gemelo digital puede ser muy útil al disponer de datos
reales y datos simulados, lo que da lugar a históricos muy completos. Para esto es necesario
almacenar estos datos de forma ordenada para poder acceder a ellos fácilmente. Lo habitual
es que se trabaje con datos estructurados, los que proceden de sensores lo son, por lo que
una base de datos SQL es una buena opción.

A continuación, se muestra un ejemplo de código para la creación de una BD SQL.

import sqlite3
from sqlite3.dbapi2 import Timestamp
import pandas as pd
from datetime import datetime
import socket

# Create a SQLite database
conn = sqlite3.connect('machine1_database.db')
cursor = conn.cursor()
# Create a table for winch data
cursor.execute(
  """CREATE TABLE IF NOT EXISTS machine1_data (
  id INTEGER PRIMARY KEY AUTOINCREMENT,
  Timestamp TEXT,
  sensor_id TEXT,
  value INTEGER)""")
conn.commit()

# Insert data into the table 
def insert_data(sensor_id, value):
  Timestamp = datetime.now().isoformat()
  cursor.execute(
    """INSERT INTO machine1_data (Timestamp, sensor_id, value) VALUES (?, ?, ?)""",
(Timestamp, sensor_id, value)
    )
  conn.commit()
  
# Consultar los datos
def query_data():
  df = pd.read_sql_query("SELECT * FROM machine1_data", conn)
  print(df)
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El análisis de los datos, tanto en tiempo real como históricos, se debe enfocar dependiendo
de las funcionalidades buscadas en el gemelo. De forma general, este análisis se puede
enfocar en 4 grandes bloques, como son predicción de fallo, análisis de escenarios, análisis
de datos procedentes de sensores virtuales y optimización de la operativa y/o energía
consumida.

Con un gemelo digital se puede analizar la degradación progresiva de un equipo para
determinar en qué momento puede alcanzar un fallo catastrófico. Para esto se pueden
utilizar modelos de regresión (como LSTMs o modelos de degradación física) sobre los
históricos de las variables (vibración, temperatura, etc.) para proyectar la tendencia futura.
Además, permite planificar el mantenimiento justo antes de la rotura (Just-in-Time
maintenance) en lugar de hacerlo por calendario o esperar al fallo.

El análisis de escenarios (What-if análisis) es posible debido a que tenemos una réplica virtual
de la física de la máquina, por lo que es posible simular escenarios que serían peligrosos o
costosos en la realidad. Aquí es donde entran los modelos físicos encapsulados conectados a
modelos de ML (Machine Learning). Es decir, partiríamos de un modelo físico (ej.
Modelica/Simulink) exportado en co-simulación (FMI) que alimentaría a un ML para ese
análisis de escenarios.

A menudo no podemos poner sensores en todas partes (por coste o inaccesibilidad, como
dentro de un pistón). En un gemelo digital se pueden usar los datos que sí se tienen
(corriente, velocidad, temperatura externa, etc.) junto con modelos físicos o de IA para
estimar variables que no se miden. Por ejemplo, calcular el par motor interno o la
temperatura en el núcleo del bobinado basándose solo en la corriente y la temperatura de la
carcasa.

Un gemelo puede tener como funcionalidad analizar la eficiencia de una máquina o sistema.
Para esto, se deben detectar puntos de operación ineficientes. Por ejemplo, detectar que un
ventilador consume un 5% más de energía de lo que debería para ese flujo de aire, indicando
filtros sucios mucho antes de que la vibración sea una alarma. El gemelo podría sugerir (o
ajustar automáticamente) los parámetros de control (PID) para minimizar el consumo
energético sin afectar la producción.

A continuación se muestra un ejemplo de código en Python con un análisis de las variables
de un equipo para la detección de fallo en éste.
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import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')
def diagnosticar_fallo(self, temperatura, vibracion, ruido, horas, tipo_maquina, umbrales):
"""Identifica tipos específicos de fallo"""
   problemas = []   if temperatura > umbrales['temp_max']:
       problemas.append('Sobrecalentamiento detectado')
   if temperatura < umbrales['temp_min']:
       problemas.append('Temperatura anormalmente baja')
   if vibracion > umbrales['vibracion_max'] * 1.5:
       problemas.append('⚠️ Desequilibrio o desalineación severa')
   elif vibracion > umbrales['vibracion_max']:
       problemas.append('Vibración elevada - posible desgaste')
   if ruido > umbrales['ruido_max']:
       problemas.append('Ruido anómalo detectado')
  if horas > umbrales['horas_mantenimiento']:
       problemas.append('Mantenimiento preventivo vencido')
  return problemas if problemas else ['Sin anomalías detectadas']

6. Visualización

El gemelo digital necesita interactuar con operarios, técnicos, diseñadores, etc. por lo que
una visualización que permita acceder a la información relevante de forma sencilla, fácil de
interpretar, es fundamental. Para esto se puede emplear desde gráficas hasta realidad
aumentada o virtual, dependiendo de la funcionalidad buscada en el gemelo. Habitualmente
un dashboard bien configurado es suficiente.

Figura 6. Dashboard de selección de equipo
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Figura 6. Dashboard de selección de equipo

Figura 7. Dashboard de configuración de parámetros del equipo real y su equivalente digital

Figura 8. Dashboard con gráficas de datos reales y simulados
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7. Ciberseguridad

Cualquier gemelo digital, al tener una parte IoT crea un puente bidireccional entre el mundo
físico y el mundo digital, y esto implica vulnerabilidad. Al replicar no solo el estado sino
también el comportamiento de un activo, el gemelo se convierte en el mapa perfecto para un
atacante y, simultáneamente, en la puerta trasera definitiva hacia la maquinaria crítica.

Tradicionalmente, para sabotear una turbina o una red eléctrica, un atacante necesitaba
meses de ingeniería inversa para entender el sistema. Con un Gemelo Digital comprometido,
el atacante obtiene instantáneamente acceso a modelos CAD, algoritmos de control
propietarios y parámetros de diseño, es decir, a la propiedad intelectual de aquellos que han
desarrollado el gemelo. Además, se puede usar el gemelo como "banco de pruebas"
(Sandboxing malicioso) para simular ciberataques contra el activo virtual hasta encontrar
uno exitoso, sin arriesgarse a ser detectado en el sistema real.

En ciberseguridad estándar se protegen los datos. En Gemelos Digitales, la violación de datos
puede tener consecuencias físicas. Si un atacante altera los datos del gemelo (data
poisoning), puede inducir errores catastróficos. Por ejemplo, el gemelo muestra que la
máquina está a 50°C (datos inyectados), mientras el activo real está ardiendo a 200°C. El
operador no detiene la máquina porque confía en el gemelo. Si el gemelo tiene capacidades
de control (nivel 3-4), una orden corrupta enviada desde el entorno virtual puede cambiar
setpoints físicos, desactivar frenos o alterar mezclas químicas.

Los estándares como FMI intercambian modelos matemáticos (FMUs). Un archivo FMU
malicioso podría contener código ejecutable que, al ser cargado por el orquestador de
simulación, inyecte malware en el sistema host.

Dentro de la capa IoT los sensores están conectados al borde Edge, si no están asegurados
sirven como punto de entrada para inyectar datos falsos que corrompen la simulación
global.

Una arquitectura habitual en un gemelo es que este resida en la nube para aprovechar la
potencia de cálculo. Las interfaces entre el sistema real y la nube son el punto de
estrangulamiento donde ocurren la mayoría de las intrusiones.

Se pueden usar diferentes estrategias para evitar un ciberataque. Se puede optar por una
arquitectura Zero Trust, donde se asume que ninguna señal, ni siquiera las que vienen de
dentro del sistema físico, es confiable hasta que se verifique criptográficamente. También se
puede optar por realizar verificaciones cruzadas, es decir, si un sensor indica una vibración
extrema pero el consumo de corriente del motor no ha subido, el gemelo puede detectar esa
"imposibilidad física" y marcar el sensor como "probablemente hackeado" en lugar de activar
una alarma mecánica. Hoy en día, también es posible entrenar una IA de defensa para
reconocer patrones de intrusión (anomalías en el tráfico de red o en la física del sistema)
antes de que ocurran en la realidad.
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La implementación de un Gemelo Digital no es solo un reto de ingeniería mecánica o de
software, es fundamentalmente un reto de ciber-resiliencia. Un gemelo inseguro es, en
esencia, una "puerta trasera" documentada y abierta hacia el corazón del cualquier sistema
físico.
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A implementação de um piloto de manutenção preditiva envolve um conjunto de fases
encadeadas que vão desde a definição do equipamento, passando pela recolha e tratamento
dos dados, até à criação dos modelos preditivos e sua integração operacional. Este guia
descreve, em detalhe, cada uma dessas fases, bem como as tecnologias e metodologias
recomendadas para garantir um piloto realista, funcional e validado em ambiente industrial.

1. Definição do Equipamento e Objetivos do Piloto

A implementação de um piloto de manutenção preditiva no setor naval exige uma fase inicial
extremamente rigorosa, uma vez que todo o sucesso do projeto depende da clareza com
que se definem os seus limites, os objetivos operacionais e o equipamento envolvido. Antes
de considerar algoritmos, tecnologias ou modelos, é indispensável compreender o ambiente
marítimo, caracterizado por condições severas, restrições logísticas e elevada criticidade
operacional. Por isso, esta primeira fase dedica-se a estabelecer o enquadramento técnico e
estratégico, garantindo que o piloto é ao mesmo tempo realizável e representativo das
necessidades reais da embarcação.
O primeiro passo consiste em selecionar o equipamento ou subsistema a monitorizar. Esta
escolha deve ter em conta a relevância do equipamento para a segurança e funcionamento
do navio. Muitos sistemas a bordo, tais como motores auxiliares, bombas hidráulicas,
compressores de ar ou ventiladores de refrigeração funcionam continuamente e estão
sujeitos a desgaste natural. Equipamentos deste tipo são candidatos ideais, tanto pela sua
importância como pela previsibilidade dos seus modos de falha. Em navios mercantes,
embarcações offshore ou plataformas marítimas, a escolha tende a recair em componentes
cuja falha tem consequências diretas na operação, como bombas de refrigeração de água do
mar, motores geradores ou sistemas de ar comprimido. Além disso, deve ser considerado o
grau de acessibilidade a bordo, pois algumas áreas da casa de máquinas apresentam
espaços reduzidos, limitações de segurança ou temperaturas elevadas que dificultam a
instalação de sensores ou gateways.

Após a seleção do sistema-alvo, é necessário identificar quais variáveis operacionais melhor
representam o estado de saúde desse equipamento. Em ambiente naval, esta identificação é
particularmente importante, pois muitos fatores externos como as condições de mar, a
vibração estrutural do casco, o calor na casa de máquinas e as variações bruscas de carga,
afetam o comportamento dos equipamentos. Assim, a escolha das variáveis deve equilibrar
relevância técnica, viabilidade de medição e sensibilidade à degradação. Por exemplo, a
vibração de rolamentos é essencial para motores e bombas; a corrente elétrica diz muito
sobre o esforço mecânico de motores; a temperatura revela desgaste ou problemas de
lubrificação; a pressão e o caudal são fundamentais para sistemas hidráulicos e de
refrigeração. É também importante considerar variáveis ambientais e de operação, tais como
a temperatura da sala de máquinas, as condições de navegação ou o regime de
funcionamento (manobra, cruzeiro ou porto), pois estas influenciam diretamente o perfil dos
dados.
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Esta fase deve igualmente avaliar as limitações práticas da operação marítima. Diferente de
ambientes industriais em terra, o navio opera em isolamento, com comunicações limitadas e
dependentes de satélite, sujeitas a latências elevadas ou instabilidade. Assim, torna-se
necessário definir desde o início que parte do processamento será feita localmente, em
dispositivos edge, e que dados serão enviados para sistemas em terra. Além disso, o
equipamento instalado deve cumprir normas marítimas e de segurança, especialmente
quando colocado em zonas de risco, como áreas com potencial de atmosfera explosiva ou
locais sujeitos a vibrações extremas. Todas estas restrições devem ser conhecidas antes do
início do piloto, para evitar soluções tecnicamente inadequadas ou incompatíveis com os
regulamentos navais.

Paralelamente, é fundamental definir os objetivos técnicos e operacionais do piloto. A
manutenção preditiva pode assumir várias abordagens: deteção precoce de anomalias,
previsão de falhas com antecedência, estimativa da vida útil remanescente ou otimização de
períodos de manutenção durante escalas em porto. No setor naval, estes objetivos são
particularmente valiosos, pois permitem reduzir paragens inesperadas durante a navegação,
evitar penalizações por falhas operacionais, otimizar janelas de manutenção portuária e,
sobretudo, aumentar a fiabilidade de sistemas que, quando falham, colocam em risco não
apenas a operação, mas também a segurança da tripulação e da embarcação.

Outro elemento fundamental nesta fase é a definição da duração do piloto e da estratégia de
recolha de dados. Em navios, os equipamentos operam em diferentes regimes ao longo de
uma viagem, pelo que é essencial recolher dados durante um período suficientemente longo
para abranger todas as condições relevantes: operação contínua em mar alto, mudanças de
carga durante manobras, arranques e paragens frequentes em porto, variações de
temperatura e humidade, entre outros fatores. Geralmente, recomenda-se uma duração
entre três e seis meses, dependendo da frequência de operação do equipamento
selecionado. Um período demasiado curto pode não ser suficiente para identificar padrões
de degradação ou para alimentar modelos que exigem diversidade de cenários.

Por fim, esta fase exige um alinhamento com os principais intervenientes do setor naval. A
colaboração entre estes agentes garante a aceitação do sistema, a viabilidade operacional da
instrumentação e o cumprimento de todas as normas de segurança e certificação marítima.
Além disso, assegura que o piloto responde a necessidades reais e pode ser escalado
posteriormente para outros equipamentos ou embarcações da frota.
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2. Análise e Planeamento da Recolha de Dados 

Depois de definidos os objetivos operacionais, a fase seguinte consiste numa análise técnica
aprofundada que permitirá determinar como os dados serão obtidos, qual infraestrutura
será necessária a bordo e que constrangimentos precisam de ser considerados na recolha
contínua de informação. Esta fase é crítica, porque a manutenção preditiva depende
inteiramente da qualidade, consistência e representatividade dos dados recolhidos. Se esta
etapa não for tratada com rigor, todo o projeto ficará comprometido, mesmo que os
modelos preditivos sejam avançados ou tecnologicamente sofisticados.

O ponto de partida desta análise consiste em avaliar a infraestrutura existente no navio e a
sua capacidade para suportar monitorização contínua. Assim, é necessário compreender
cuidadosamente o que já existe: sensores funcionais, localização física dos painéis de
controlo, pontos de acesso Modbus ou OPC-UA, e disponibilidade de portas livres, tanto em
termos elétricos como de rede.

Após esta avaliação da infraestrutura, passa-se à decisão sobre que sensores serão
adicionados. A instalação não pode interferir com a operação normal do equipamento,
especialmente em sistemas críticos. Com os sensores definidos, a fase seguinte consiste na
escolha de um sistema de aquisição e transmissão de dados, geralmente baseado em
dispositivos edge. Estes dispositivos, que podem ser computadores industriais, unidades
embarcadas IoT ou equipamentos dedicados de fabricantes marítimos, desempenham duas
funções essenciais: por um lado, recolhem dados dos sensores, agregam-nos e pré-
processam-nos localmente; por outro, enviam-nos para servidores externos ou sistemas de
monitorização conforme a disponibilidade da conectividade. 

A decisão sobre o protocolo de comunicação é igualmente importante. Em ambiente naval,
onde a conectividade é, por vezes, instável ou intermitente, protocolos leves e resilientes,
como MQTT, podem ser preferidos para envio de dados em tempo real. OPC-UA é mais
utilizado para integração com sistemas existentes a bordo, oferecendo maior segurança e
interoperabilidade industrial. 

Outro elemento crítico nesta fase é a definição das frequências de amostragem.
Equipamentos navais apresentam diferentes dinâmicas físicas, e a taxa de recolha deve
evitar dados insuficientes ou desnecessariamente volumosos. Dados de vibração, usados
para detetar falhas em rolamentos ou desalinhamentos, requerem amostragens elevadas
enquanto variáveis como temperatura ou pressão podem ser registadas com muito menor
frequência. A definição incorreta da amostragem pode comprometer toda a capacidade
diagnóstica, pelo que esta decisão deve ser feita em conjunto com engenheiros de bordo e
especialistas em análise de sinais.
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Com as questões de sensorização e transmissão resolvidas, torna-se fundamental planear o
armazenamento dos dados, tanto localmente quanto remotamente. A bordo, o
armazenamento temporário deve ser dimensionado para garantir que a perda de
conectividade não compromete o piloto. Em terra, a escolha entre bases de dados locais ou
de cloud depende das políticas da empresa e dos requisitos regulatórios. A utilização de
bases de dados de séries temporais, como InfluxDB ou TimescaleDB, é amplamente
recomendada, dada a natureza regular e contínua das medições. Estas bases facilitam o
processamento subsquente, permitindo agregações rápidas e extração eficiente de grandes
volumes de dados.

Finalmente, esta fase deve considerar o mapeamento completo do ciclo de dados, desde a
origem no sensor até ao processamento final, garantindo que cada etapa é tecnicamente
viável a bordo. Deve-se identificar claramente como serão tratadas questões como perda de
pacotes, latência, sincronização entre sensores e capacidade energética dos dispositivos
adicionais. A análise técnica nesta fase não requer ainda decisões sobre modelos preditivos,
mas deve preparar as condições que garantem que esses modelos serão alimentados com
dados de qualidade, consistentes e representativos do ambiente real de operação naval.

 3. Arquitetura Técnica e Desenvolvimento da Infraestrutura de Dados

A construção da arquitetura técnica representa um dos pilares centrais de qualquer piloto de
manutenção preditiva, pois define de que forma os dados serão captados, processados,
armazenados, modelados e disponibilizados às equipas de operação e manutenção. No
contexto naval, esta fase assume particular importância devido à diversidade dos sistemas, à
complexidade das condições de funcionamento e às limitações físicas e tecnológicas que
caracterizam o ambiente marítimo. Uma arquitetura bem delineada garante não só o correto
funcionamento do piloto, mas também a sua escalabilidade para outros equipamentos ou
mesmo para toda a frota.

O ponto de partida para a definição da arquitetura é o desenho do fluxo completo de dados,
desde o sensor instalado no equipamento até ao modelo preditivo que operará no servidor
ou no sistema edge. Esse fluxo deve ser robusto o suficiente para lidar com as condições
desafiantes a bordo, como vibrações, variações de energia, ruído eletromagnético e
conectividade intermitente. Assim, é fundamental estabelecer uma cadeia de recolha que
inclua sensores industriais robustos, sistemas adequados de aquisição de dados, dispositivos
de computação periférica (edge computing) e mecanismos de sincronização e envio para
plataformas em terra. Cada um destes elementos deve ser compatível tanto com as
condições físicas do navio como com os protocolos de comunicação e segurança exigidos.

Após a definição do caminho dos dados, passa-se à criação da infraestrutura de
processamento local, geralmente designada por camada edge. Esta camada é essencial na
indústria naval, uma vez que o navio não pode depender exclusivamente da ligação à terra
para processar medições em tempo real. 
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Assim, equipamentos como computadores industriais compactos, PLCs programáveis são
utilizados para recolher os dados dos sensores, realizar pré-processamento inicial (como
filtragem, agregação ou deteção preliminar de anomalias) e assegurar que os dados são
armazenados temporariamente quando a conectividade é insuficiente. A capacidade de
computação desta camada deve ser dimensionada para suportar operações contínuas e,
sempre que possível, hospedar versões simplificadas dos modelos preditivos, permitindo
análises imediatas mesmo em mar alto.

A arquitetura deve igualmente especificar os protocolos de comunicação utilizados em cada
ligação. Em muitos navios, coexistem tecnologias de diferentes gerações, desde sistemas
legacy baseados em Modbus RTU a redes modernas com OPC-UA. A integração destes
sistemas requer planeamento cuidadoso, especialmente quando o piloto pretende ser
compatível com uma frota heterogénea. Protocolos como MQTT são frequentemente
adotados para o envio de dados para servidores externos, devido à sua eficiência, tolerância
a falhas e baixa exigência de largura de banda. Já OPC-UA é ideal para recolher dados de
sistemas automáticos existentes, oferecendo interoperabilidade e normas de segurança
robustas. A escolha destes protocolos deve considerar não apenas a eficiência, mas também
requisitos de cibersegurança, uma vez que navios são cada vez mais alvos de ataques
cibernéticos.

Definido o fluxo local, a fase seguinte consiste em desenhar a camada de armazenamento e
processamento em terra, que será responsável pela análise histórica, treino dos modelos
preditivos e execução de algoritmos mais pesados do ponto de vista computacional. É nesta
camada que se integra uma base de dados de séries temporais, normalmente implementada
através de soluções como InfluxDB, TimescaleDB ou bases cloud otimizadas para dados IoT.
O armazenamento em terra permite concentrar grandes volumes de dados de várias
embarcações, permitindo comparações entre equipamentos, benchmarking interno e a
construção de modelos transversais. Ao mesmo tempo, esta camada funciona como
repositório central para dashboards operacionais, sistemas de alerta e ferramentas de
análise avançada.

A arquitetura técnica deve ainda contemplar o mecanismo de transferência de dados entre o
navio e a infraestrutura em terra. Esta transferência pode ocorrer de forma contínua,
quando a embarcação dispõe de conectividade satélite estável, ou pode ser realizada em
modo assíncrono, com sincronizações periódicas, por exemplo, quando o navio está em
porto. Esta decisão depende do tipo de dados recolhidos, da frequência de amostragem e
das necessidades operacionais do piloto. Para dados de vibração de alta frequência, por
exemplo, não é realista enviar tudo para terra em tempo real; nesses casos, parte do
processamento deve ocorrer localmente, enviando-se apenas métricas agregadas e
indicadores de saúde.
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Um elemento essencial desta fase é a definição dos serviços de aplicação e camadas de
visualização. Estes serviços serão responsáveis por apresentar, de forma intuitiva e acessível,
a informação proveniente dos sensores e dos modelos. Em ambientes navais, onde os
operadores podem estar sob forte carga de trabalho, dashboards claros e bem estruturados
são fundamentais. Assim, a arquitetura deve incluir ferramentas de visualização como
Grafana, Power BI ou plataformas proprietárias integradas com o sistema de automação do
navio. Além disso, a arquitetura deve permitir integrar facilmente funcionalidades adicionais,
como alarmes preditivos, relatórios automáticos de tendência ou sistemas de apoio à
decisão baseados em inteligência artificial.

Outro fator importante a considerar é a interoperabilidade com sistemas existentes a bordo
e em terra. Os sistemas de gestão de manutenção (CMMS), como o Maximo, ManWinWin ou
SAP PM  gerem ordens de trabalho, inventário e planeamento. A arquitetura técnica deve,
idealmente, permitir a integração com estes sistemas, automatizando fluxos como a
abertura de uma ordem de manutenção quando o modelo preditivo identifica uma
degradação relevante. A integração pode ocorrer através de APIs, conectores middleware ou
interfaces dedicadas, conforme a maturidade digital da frota.

Por fim, a arquitetura deve contemplar mecanismos de cibersegurança e resiliência,
especialmente porque navios operam em ambientes isolados e são cada vez mais alvo de
ataques direcionados. Isto inclui encriptação dos dados, autenticação forte nos dispositivos
edge, firewalls marítimas certificadas e políticas de segmentação das redes do navio,
garantindo que o piloto de manutenção preditiva não introduz vulnerabilidades no
ecossistema operacional da embarcação.

Quando concluída, esta fase entrega uma arquitetura coerente, robusta e adaptada às
limitações do ambiente naval, estabelecendo os alicerces que permitem, nas fases seguintes,
desenvolver os modelos preditivos e integrá-los com os sistemas reais de bordo.

4. Desenvolvimento dos Modelos Preditivos

Depois de estabelecida a arquitetura técnica e assegurado o fluxo de dados entre sensores,
dispositivos edge e sistemas de armazenamento, inicia-se a fase dedicada ao
desenvolvimento dos modelos de simulação e dos modelos preditivos. Esta é uma etapa
determinante no piloto de manutenção preditiva, pois traduz a informação recolhida em
conhecimento acionável sobre o estado dos equipamentos, permitindo antecipar falhas,
detetar anomalias, estimar degradação e apoiar decisões de manutenção em tempo útil. A
abordagem de modelação nesta fase depende fortemente da quantidade e qualidade dos
dados recolhidos, bem como da complexidade física do equipamento monitorizado e das
suas condições de operação a bordo.
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Análise Exploratória de Dados e pré-processamento

O primeiro passo consiste na análise exploratória dos dados disponíveis. Antes de treinar
qualquer modelo, é necessário compreender a estrutura temporal dos sinais recolhidos, a
sua variabilidade em diferentes regimes de operação, padrões cíclicos relacionados com a
navegação do navio e possíveis anomalias decorrentes de eventos externos. Em ambiente
naval, esta etapa ganha especial relevância, porque muitos fatores externos influenciam
diretamente os dados: alterações bruscas de carga durante manobras, vibrações induzidas
pela rotação da hélice ou do eixo propulsor, condições de mar adversas e impactes térmicos
devidos ao funcionamento prolongado da casa de máquinas. A segmentação dos dados por
regime operativo, por exemplo, navegação em cruzeiro, manobra ou porto, é essencial para
evitar que o modelo confunda variações normais de operação com sinais de degradação.

A partir desta análise inicial, procede-se ao pré-processamento aprofundado dos dados, que
pode incluir filtragem de ruído, normalização, extração de características espectrais e
construção de janelas temporais que sintetizam a evolução do equipamento ao longo do
tempo. Para sinais de vibração, recorre-se frequentemente à Transformada Rápida de
Fourier (FFT) ou a wavelets para analisar frequências específicas associadas a desequilíbrios,
folgas ou desgaste de rolamentos. Já em sinais elétricos, como corrente ou potência
consumida por motores, a extração de características estatísticas (média, variância,
assimetria, curtose) e a análise do comportamento sob diferentes cargas ajudam a indicar
padrões de envelhecimento ou sobreaquecimento. Em suma, o pré-processamento
transforma sinais brutos em informação estruturada e analiticamente significativa,
fundamental para o sucesso dos modelos preditivos.

Modelação

Concluído o pré-processamento, passa-se à definição da estratégia de modelação. Em
manutenção preditiva, os modelos podem seguir três grandes abordagens: modelos de
deteção de anomalias, modelos supervisionados e modelos de previsão da vida útil
remanescente. A escolha entre estas abordagens depende sobretudo da disponibilidade de
dados históricos de falhas, que é muitas vezes limitada no setor naval. Em navios, falhas têm
impacto elevado e, por isso, são relativamente raras; além disso, os registos podem ser
incompletos ou não incluir sensores suficientes para reconstruir o comportamento exato no
período anterior à falha. Por esta razão, muitos pilotos navais começam com modelos de
deteção de anomalias, que aprendem o comportamento normal do equipamento e sinalizam
desvios.

Modelos de deteção de anomalias incluem técnicas como Isolation Forest, One-Class SVM,
Local Outlier Factor ou autoencoders neuronais. Estas abordagens não requerem dados de
falha, mas sim um volume suficientemente grande de dados representando operação
normal. Após o treino, o modelo cria uma espécie de “assinatura digital” do comportamento
esperado do equipamento e passa a detetar padrões que escapam a essa normalidade. 
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Num compressor de ar ou numa bomba de água de refrigeração, por exemplo, um aumento
subtil mas contínuo de vibração em determinada banda de frequência pode ser sinal de
desgaste precoce, ainda impercetível para a tripulação.

Quando existem dados rotulados , isto é, quando é possível identificar períodos históricos
em que ocorreram falhas ou degradações relevantes, torna-se possível treinar modelos
supervisionados. Estes modelos aprendem a distinguir entre estados saudáveis e estados
anómalos, classificando novos dados segundo o padrão aprendido. Algoritmos como
Random Forest, XGBoost ou Support Vector Machines são amplamente usados, não só pela
sua precisão, mas também pela capacidade de explicar parcialmente quais variáveis mais
contribuem para a degradação. Esta interpretabilidade é especialmente valorizada no
ambiente naval, onde decisões de manutenção influenciam diretamente a segurança da
embarcação.

A terceira abordagem envolve a estimativa da vida útil remanescente (Remaining Useful Life
(RUL)). Esta técnica é particularmente relevante em equipamentos sujeitos a desgaste
progressivo, como rolamentos, vedantes, sistemas hidráulicos e motores auxiliares com
longos ciclos de operação. Modelos de RUL incluem regressões avançadas, redes neuronais
recorrentes como LSTM ou GRU, e modelos probabilísticos baseados em distribuições de
Weibull ou Cox Proportional Hazards. A previsão de RUL permite planear intervenções
durante paragens previstas em porto, evitando avarias durante a navegação e reduzindo
custos de manutenção corretiva.

A construção e o treino dos modelos dependem de ferramentas adequadas. Em ambiente
académico e industrial, Python é a linguagem predominante, e bibliotecas como Pandas,
NumPy, scikit-learn, TensorFlow, PyTorch, tsfresh e Prophet desempenham um papel central.
Estas bibliotecas permitem desde manipulação de dados a treino de redes neuronais
complexas, sempre com um ecossistema consolidado e amplamente validado. Para além
disso, ferramentas como MLflow podem ser utilizadas para acompanhar os resultados de
cada experiência, garantindo reprodutibilidade e rastreabilidade, aspetos críticos quando
modelos começam a influenciar decisões reais de manutenção.

Concluído o treino, o modelo precisa de ser validado com dados de teste e posteriormente
com dados reais em funcionamento contínuo. No setor naval, essa validação deve considerar
diferentes estados de navegação, condições ambientais extremas e variações de carga
típicas da operação. A validade de um modelo só pode ser confirmada se ele for capaz de
identificar padrões de degradação em cenários complexos e não linearmente
correlacionados. Após validado, o modelo é preparado para ser integrado na arquitetura
definida anteriormente, podendo ser executado a bordo, no edge, ou num servidor remoto,
dependendo das necessidades e limitações da operação. Assim, a Fase 4 termina com a
criação de um conjunto de modelos preditivos, prontos para serem integrados no piloto.
Estes modelos constituem o núcleo da manutenção preditiva e representam a inteligência
analítica que transforma dados operacionais do navio em recomendações, alertas e
previsões capazes de melhorar a segurança, eficiência e fiabilidade da embarcação.
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